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i ABSTRACT

The research presents a study of ‘the maximal coverage p-median and of the
set covering facility location problems as applied to the GEODSS location problem.
The classical single-objective mathematical formulations of the p-median and set
covering problems are converted into network-flow formulations and various solu-
tion method&.ogieg are developed using a scaled-down version of the GEODSS

~

problem.

The next step of th; rescarcix\)is the introduction of a second criterion
function into the problem. This second function consists of minimizing the sum of

the variance in coverage at the selected locations. \Ihe/r_esearch reveals the deficien-

cies of MOLP (multiobjective linear programming) techniques in generating the

efficient frontier of an integer problem. A"’brute-force(r‘ solution algorithm is devel- ’

oped and programmed in FORTRAN 77 to generate all feasible alternatives,
determine which of these are non-dominated, and then provide an ordered list of
alternatives using paired comparisons with the ideal.

A case study is presented which shows the difficulty in finding a feasible
one-site solution given the need to observe a wide segment of the geostationary belt.
The example also shows that, for a given satellite population, the optimal alternative
must for similar reasons include two southerly locations. The example reveals that
while two-site solutions therefore exclude northerly locations, three-site solutions

will usually include a northerly location. &--

ix



THE OPTIMAL LOCATION OF
GEODSS SENSORS IN CANADA

I. INTRODUCTION

1. Background

The military mission of space surveillance, as defined in United States Space
Command (USSPACECOM) Regulation 55-12, is to detect, track, identify, and
catalog all man-made objects in space (46:13). To accomplish this mission, a network
of 26 ground-based sensors dispersed around the globe provide observational data to
the Space Surveillance Center (SSC) located in the Cheyenne Mountain Complex in
Colorado Springs. The SSC computers analyze this data to determine and catalog the
location of all man-made satellites in space.

Canada’s participation in the space surveillance mission dates back to 1961
with the installation of the first Canadian Baker-Nunn system (an optical film
camera) in Cold Lake, Alberta. Later, in 1976, a second Canadian Baker-Nunn site
was established in St Margarets, New Brunswick. Space surveillance operations have
since been discontinued in Cold Lake but continue today in St Margarets (13:139),

The Ground-Based-Electro-Optical Deep-Space Surveillance (GEODSS) system
(an optical video camera) is the replacement for the Baker-Nunn, Four GEODSS
systems are located around the world today with a fifth system (GEODSS 5) sched-

uled for installation in Portugal. At the request of the Commander in Chief of

1




USSPACECOM, the Canadian Forces have undertaken to operate the St Margarets
Baker-Nunn until GEODSS 5 is operational (42).

Canadian participation in the space surveillance mission once GEODSS 5 is
operational is being debated by USSPACECOM and Canadian National Defence
Headquarters (NDHQ). Within the conte. f these discussions, the option of an
autonomous network of GEODSS sensors located in Canada is being considered. The
NDHQ Directorate of Air Requirements (DAR), the sponsor for this research, has
requested that the best locations in Canada for a one-site, two-site, and three-site

GEODSS network be determined (18).

2. Research Problem

The objective of this research is to develop a methodology to determine the
optimal sensor location(s) of a one-site, two-site, and three-site GEODSS sensor
network in Canada.

2.1 Research Sub-Objectives. To attain the above research objective, the
following sub-objectives needed to be accomplished:
a. Establish a list of candidate site locations.
b. Obtain the probability that the weather is favorable to GEODSS observa-
tions at each of the candidate locations for every month of the year.
® Obtain GEODSS system spccifications.
® Obtain climatological data.
c. Determine the number of observation opportunities at each candidate
location for every month of the year, for every satellite type.
® Define an observation opportunity.
® Define the satellite target population,

® Obtain software to determine the transit frequency.



d. Calcuate the expected number of useable observation opportunities at
each candidate location for every month of the year based on the proba-
bility of favorable weather.

e. Formulate multiple-criteria facility-location and models to determine the
optimal location of the GEODSS sensor(s).

o Define the alternative space.
® Define the criteria set.
® Generate the non-dominated set.

e Define an appropriate preference structure,

3. Scope

The emphasis of this research is to provide the sponsor with a "user-friendly"
solution algorithm. The methodology is presented in Chapter VI through the use of
an example calculation using actual data. The end-product is a FORTRAN-based
software package that orders the feasible set by ascending order of the Manhattan
metric distance to the ideal. The ideal is defined as the best attainable value of two
defined criterion functions. For each alternative, the Manhattan metric deviation is

the sum of the differences from the ideal of each criterion function.

4. Assumptions cnd Limitations

An assumption is made that operations rescarch scientists at NDHQ will be
available to assist in the execution and interpretation of the solution algorithm.
Also, coordination with Meteorological Officers is crucial to the selection of
candidate locations and the detcrmination of climatological probabilities.

The research does not addiess political factors that might arise in selecting

optimal locations for the tracking of satellites.




II. LITERATURE REVIEW

The purpose of this chapter is to present a synopsis of recent scientific
literature that is pertinent to this research. Included are discussions on multiple
criteria optimization, facility location theory, network-flow programming, climatolo-
gy, optical transmission theory, and orbital mechanics. These discussions are not
intended as comprehensive treatment of the subject areas, but rather are introduc-
tions to some of the terminology and concepts that will appear in later chapters of

this report.

1. Multiple Criteria Or imization

1.1 The General Case. The general form of a multiple objective programming
problem, given k objective functions, f)(x), can be stated as follows (2:1):
Max fi(x) = z;
Max f,(x) = z,
Max f(x) = z,

st. x€8

A trivial solution to the above problem is the vector x which is contained in
the feasible region S and which simultaneously maximizes all k objectives. Except
for this trivial case, each solution vector in the feasible region will satisfy each of
the objectives at varying levels (2:3). Generally speaking, the optimal solution o the
problem will represent the solution which offers the permutation that is most

appealing to the decision maker.




A solution technique to address the non-trivial case can begin with an
assessment of the decision maker’s utility function (2:3). This utility function
essentially provides an assessment of the value the decision maker assigns to a given
solution vector. The multiple objective problem is thus reduced to the single

objective problem of maximizing the utility function, U (2:3):

Max { U(z,,z..02) }
st.f(x) =z, lsisk

xX€eES

1.2 Definitions and Terminology. The following definitions are taken from
Chan (9) and Yu (50):
1.2.1 Multicriteria Decision Making (MCDM). MCDM involves four
elements:
(1) Alternative set X, also referred to as the X-space.

(2) Criteria set f_ (if there is only one criterion the problem redu-
ces to a traditional math programming problem)

(3) Outcome set Y, also referred to as the Y-space.
(4) Preference structure, with which the decision maker picks the
best outcome.

1.2.2 Versions of MCDM. Multiattribute Decision Analysis (MADA), is
the descriptive version of MCDM, Multicriteria Optimization (MCO) is the prescrip-
tive version of MCDM.

1.2.3 Attributes. Attributes are measurable objectives or sub-objectives,

1.2.4 Goal. A goal is a specified level of an attribute; some goals are self-
suggested and "more is better" while others are standards to be achieved. We call the

former goal seeking and the latter goal setting.




1.2.5 Criteria. Criteria refer collectively to the attribut: 4, objectives, and
goals relative to a specific decision maker in specific situations.

1,2.6 Value/Utility Function. A value/utility function approach to
MCDM is to, (a) capture the total value/utility function of the decision maker for
the range of possible outcomes associated with alternatives under consideraiion, and
(b) select the alternative(s) that maximizes the decison maker’s expected
value/utility function.

1.2.7 Satisficing. Satisficing is the process of eliminating alternatives
with unacceptable attribute values; while dominance is the process of eliminating
dominated alternatives. An alternative is said to be dominated when there exists
another alternative in the outcome space that is preferred. Conversely, an alterna-
tive is non-dominated if its preferred set is empty.

1.2.8 Compromise Solution. Compromise solution is an alternative closest
to the "parceived"” ideal solution, y*. The solution methodology proposed at Chapter
III of this paper defines the ideal solution from a goal seeking (more is better)
perspective. The ideal thus assumes the best feasible value of each criterion func-
tion as coordinates in the Y-space. The distance to the idcal is computed using a
Manhattan metric.

1.2.9 Pareto Preference, For ecach criterion function, let greater values be
more preferred (i.e., more is better), and assume that no other information on the

preference is available or established. Then with respect to Pareto preference,
alternative y* is preferred to alternative y2 iff component wise y*; 2 y2,, i=l,..,q,
where "q" is the number of criterion functions.

1.2.10 Ordering. The simplest casc of MCDM is simple ordering among

alternatives where no preference structure is required. Examples include dominance

and Parcto preference. An outcome "y" is parcto optimal iff it is a nondominated




solution with respect to Pareto preference. A Pareto optimal solution is also called
an efficient, non-inferior, nondominated, or admissible solution.

1.3 Interactive Procedures. Interactive programming methods are useful in
solving problems where the decision maker’s utility function cannot be completely
defined or expressed (28:197).

1.3.1 Description. Interactive techniques involve the decision maker in
the solution process. The process is initialized by presenting a limited set of feasible
solutions to the decision maker for consideration. The act of choosing a preferred
alternative from the limited set provides additional insight into the decision maker’s
preference structure. Based on this new insight, a new set of soluticns is generated
and again presented for evaluation, This iterative process is repeated until a
stopping criteria is met (28:198; 46:1214),

1.3.2 Classifications. Vanderpooten classifies intcractive procedures into
two distinct types: search-oriented and learning-oriented procedures (46:1218).

Search-oriented procedures assume that the decision maker's preference
structure "pre-exists and remains stable" (46:1218). However, as stated above, an
interactive approach is required because the preference structure is not defined and
is internal to the decision maker. At cach iteration of the process, the decision
maker is asked to supply an assessment of the value that should be placed on the
current proposal and also to suggest a way of improving this proposal. The process is
terminated using a "classical convergence test" (46:1218).

Learning-oriented procedures differ from search-oriented procedures in that
assumptions are not made about the stability or even the prior cxistence of the
decision maker’s preference structure (46:1218). In fact, through an interactive
process similar to the search-criented procedure, the decision maker plays an
important role in the developinent and formulation of the preference structure.

However, contrary to the search-oriented procedure, the decision maker "is free to



change his mind and to conduct his exploration in a trial and error fashion"
(46:1218). Furthermore, and also unlike the search-oriented procedure, mathematical
convergence cannot be achieved and the stopping rule is invoked when the decision
maker 1s satisfied with the exploration of the feasible set {46:1219).

The research problem in this paper appears to satisfy the assumptions of an
interactive search-oriented solution methodology. Interviews with experienced
orbital analysts, who could qualify as decision makers for this problem, have
revealed consistent views in the value of individual objectives (5; 26). However,
while a stable utility function appears to exist, this function cannot be readily
expressible in mathematical terms.

1.4 Examples of Interactive Applications. There is much written in the
literature about interactive multiple- objective programming. The journals surveyed
offer innovative techniques for initializing the process and for directing the search
for the optimal solution. Three representative methodologies are included here.

14.1 Example One. Ringuest and Rinks present two search-oriented
.nteractive procedures for solving multiobjective transportation problems. A
transportation problem is a classical linear programming problem where a product
must be transported from each of m sources to any of n destinations such that one or
more objectives are optimized (36:96).

The first algorithm begins by optimizing each of the objective functions
separately but subject to the multi-objective problem constraints to maintain
feasibility. This produces an initial set of nondominated solutions which span the
solution space (36:100). A nondominated solution represents a point in the feasible
space where it is not possible to increase the value of one of the objectives without
decreasing the value of another (39:4). An "optimal linear compromise solution" is
also obtained and provides morc complete coverage of the solution space (36:98). As

the name implies, th'; additional solution is a feasible compromise to the ideal




solution (where all objectives are maximized) which is infcasible except for the
trivial case.

The decision maker is presented with the above set of solutions and asked to
choose a preferred solution. If the decision maker is satisfied with the chosen
solution the algorithm is terminated. Otherwise, nondominated solution points, adja-
cent to the best current solution, are generated and presented for review., The
process is repeated until the decision maker is satisfied (36:100).

The authors suggest a modified multicriteria simplex method, which was
developed by Yu and Zeleny, to produce the new set adjacent points required at each
iteration:

The Yu and Zeleny algorithm can be used to enumerate all nondominated
solutions for a general multiobjective linear program. Multicriteria simplex
proceeds from an initial nondominated solution by solving a nondominance
subproblem for each adjacent basis. ... A modification by Klingman and Mote
... reduces the computat.unal effort involved in implementing ... the method.

(36:98)

The second technique offered by Ringuest and Rinks also begins by optimiz-
ing each objective separately to generate a set of nondominated solutions. The
decision maker is then asked to review the sct of nondominated solutions and the
process stops immediately if the decision maker judges one of the solutions to be
satisfactory. Otherwise, a function which passes through each of the current

nondominated solution vectors is identified. This function has the following form

(36:100):
1
@) = T w, z,x)
k=l
The wy in the above equation represent the weights associated with each

nondominated solution vector z,. These weights are determined by solving the

following L by (L + 1) homogencous system of equations (36:100):




1
Ywz, -w,=0 k=1,.L
el A

where 2, is the jth element of z,

The function z'(x) can now be optimized using any efficient, single-objective
transportation problem algorithm (36:100). If the optimal solution to this problem is
preferred to at least one of the current set of nondominated solutions, the new
solution is substituted for the least preferred solution and the entire process is
repeated. Otherwise, the decision maker chooses the most preferred solution from
the current set and the process terminates.

The primary difference between the above two techniques is the method used
to generate a new set of nondominated solutions for decision maker appraisal. The
first technique searches "along the edges of the feasible decision variable space"
while the second algorithm, which relies on a weighting scheme of the objective
functions, moves "back and forth across the objective function space" (36:104),

The authors underline the fact that the first algorithm can potentially
produce extremely large sets of nondominated solutions (i.e., all adjacent solution
points) for review by the decision maker. However, the second algorithm produces
exactly (L + 1) alternatives at each jieration, where L is the number of objectives.
Therefore, "unless a problem has a large number of objectives, the second algorithm
imposes less of a burden on the decision maker” (36:1013).

14.2 Example Two. Michalowski prescnts a learning-oriented technique
for solving multiobjective problems.

The starting point of the Michalowski technique is an estimate of the worst
solution to the problem (28:198). This differs markedly from the Ringuest and Rinks

methodologies presented above which are initialized using solution vectors that
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include the best values that can bc attained for each objective function.,
Michalowski suggests that using the worst outcome as a reference point is ideally
suited to decision situations wiere "the search for an admissivle decision is driven
by the desire to avoid undesirable consequences” (28:198).

Michalowski of fers three ways of obtaining the initial worst outcome. The
simplest technique is to have the decision maker specify the worst outcome levels.
Another method is to determine the worst feasible value of each individual objective
function, Alternatively, Michalowski suggests that estimates of the worst levels be
extracted from a payoff table (28:199).

The general form of a payoff table is shown at Table 1. The entries along a
row represent the value, z;; obtained for objective function z; when objective
function z; is optimized. Therefore, the entries along the main diagonal form the
vector of maximum values for each objectives. The vector formed by taking the
minimum value in cach column represents an estimate of the worst feasible solution
(39:267).

Steuer warns that the payoff table is not a reliable method for obtaining the
true minimum values, Computational experience has shown that, in a majority of
cases, one or more of the minimum values obtained in this manner are incorrect
(39:268). Therefore, the impact of this phenomenon on the Michalowski algorithm
s.‘hould be reviewed before the payoff table method for generating the initial
solution is adopted.

Once the initial worst outcome is defined, the iterative process can begin. At
each stage of the process, the decision maker compares the set of solutions with the
worst case and generates a new decision. The decision is used as a basis to define a
new worst case solution which displaces the previous worst outcome. Thus, the
decisions taken at cach iteration provide information about a decision maker’s

preferences. This preference information is modelled mathematically to generate
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Table 1 - Payoff Table

another alternative which better meets the decision maker’s preferences. The search
process can be terminated either when the dccision maker is satisfied with the
solution or when the generated solutions start to repeat themselves (28:199).

Michalowski claims that one of the main advantages of this technique over
other interactive approaches is that "the complexity of the interaction with a
decision maker is kept at a minimum" 28:202). Another strength of the approach is
that, since the scarch is learning-oriented, the decision maker is permitted to freely
sample the solution space while learning about his/her preference structure (28:202).

14.3 Example Three. Arbel and Oren present a search-oriented algorithm
to solve multiobjective linear programming problems.

The technique uses the simplex method to generate an initial feasible solu-
tion, and to produce the adjacent nondominated solutions for comparison, The
search direction for follow-on iterations is generated using a technique called the
Analytic Hierarchy Process (2:370).

At each step of the process, the relative weights of the adjacent solution
vectors, w;, and the weight of the current solution vector, w,, are obtained through
pairwise comparison performed by the decision maker. If w, = w; for all i = (1,..,k},

then the current solution is the one most preferred by the decision maker and the
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process terminates. Otherwise the following system of equations (in matrix form) is

solved to obtain the gradient vector, del W(yo)'r (2:370);

: Wi W, : { le'yoT :
| wa-w, | | yaT-yor |
| | n |
| | = | | del W(y))T
[ | I [
| wy-w, | I vl -yt |

where y, are the candidate solution vectors
and w, are the relative weights of these vectors

The original objective functions are weighted using the components of the
gradient vector (2:371). The simplex technique is then used to solve the resulting
single-objective problem and generate 2 new current solution to begin the process
anew. As indicated above, the stopping criteria is met when the decision maker
considers that the current solution carries more weight than all adjacent solutions.

Arbel and Oren claim that a major advantage of this technique is that the
decision maker does not have to provide answers to "implicit preference questions
concerning his objectives, but instead considers explicit evaluation of adjacent
possible improvements" (2:373).

1.5 Evaluation of Interactive Techniques. The authors surveyed generally agree
about the usefulness of interactive techniques in solving multiobjective problems.

Steuer claims that "the future of multiple-objective programming is in its
interactive application" (39:361). Vanderpooten supports Steuer’s assertion and also
cites Kok as proposing that "it is rowadays accepted that the interactive approach is
the most appropriate way of obtaining the preferences of a decision maker"

(46:1217). Steuer also provides the following insight:
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Interactive procedures permit an effective division of labor. They allow the
computer to do what it does best (process data and execute algorithms), and
they allow the decision maker to do what he or ¢ .~ does best (make improved
judgments in the face of new information). (39:361)

Interactive techniques are facilitated by the use of computers. Gibson et al.
advances that "specifically, the use of computer graphics may greatly facilitate the
process of interactive decision making" (15:104). Also, the ability to examine
multiple scenarios and replay a number of "what-if" scenarios serve to enhance the
solution process (15:104).

Gibson et al. also explain that solution techniques may be problem-specific
and point to the need to wisely select the appropriate multiple objective algorithm
(15:104). In a more recent article, Mote and Venkataramanan suggest a set of criteria
that should be used for evaluating interactive solution techniques. First, the
technique chosen should enhance the decision maker’s understanding of the problem.
Second, the methodology should ensure nondominated solutions are generated.
Finally, the process should not overburden the decision maker (30:719).

1.6 Summary. Multiple criteria optimization techniques provide a method of
finding the best compromise solution when a series of objective functic as cannot be
optimized simultaceously. Interactive methods involve the decision maker in the
snlution process and are used to solve multiobjective problems where the decision
maker’s preference structure is unknown or inexpressible.

Yanderpooten classifies interactive multiobjective optimization techniques as
search-oriented or learning-oriented (46:1218). Search-oriented methods operate
under the assumption that a preference structure exists and is stable. Learning-
oriented techniques do not require this assumption but allow the decision maker to
express and define a preference structure while searching for the optimal solution.

Whether learning-oriented or search-oriented, the four algorithms studied in

this chapter offer variations of the same theme. First, varying methods of obtaining
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an initial solution to the problem are proposed. Second, different ways of generating
additional solutions for review by the decision maker are discussed. Finally, slightly
different termination criteria are invoked to signal the arrival of the best solution
and to end the process.

There is a general consensus in the literature surveyed that the interactive
approach is an ideal multiobjective problem sclving technique. Steuer’s comment
that interactive techniques provide an effective division of labor between the com-
puter and the decision maker is an accurate expression of the underlying theme of

interactive multiple objective optimization methodologies (39:361).

2. Location Studies

This section identifies the basic building blocks of location models and
relates mathematical programming formulations the types of problems encountered
in location studies. The organization and content of this section is borrowed from a
paper by Chan and Rowell (11).

2.1 P-Median Problem. The most basic location model is the "simple plant
location problem" also known as the uncapacitated facility location problem. This
problem needs to be solved to establish a number of facilities with enough capacity
to meet all demands. The equations are solved to obtain the lowest cost alternative
considering both facility costs and transportation costs. The constraints ensure that
all locations are serviced by exactly one facility, and that the selected service

facilities are open. The system of equations for this model is as follows:
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where
xy =1 if location i is serviced by facility j
x; =1 if facility j is opened
d;; = cost of servicing location i from facility j
c; =fixed cost of establishing facility j
I' =set of locations for both supply and demand

The "p-median" problem (16) seeks to place p facilities, instead of one
facility, among the demands. This type of problem seeks to minimize the average
distance or time between facility and servicing locations, The problem can be stated

as:

Minimize £ X f, dv X

o jd
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where
f; = frequency of demand at point i (weight)
d = distance from point i to facility j
x = 0-1 integer variable
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In the above system of equations, the variable Xy is set equal to 1 when
facility j is selected to provide services to demand point i. The constraints ensure
that all demand points are serviced and that p facilities are selected. Since the
weighted distance (or time), dyjs is minimized, the model ensures that each demand
point is serviced by the nearest facility.

The p-median problem can be solved using standard linear programming
techniques. However, more efficient solutions have been proposed in the literature
(6; 3; 40).

If necessary, a constraint can be added to the p-median problem to impose a
limit to the distance that must be traveled to reach a facility. This distance is
known as the maximum, desirable service distance (43). The additional constraint

that must be added to the problem is of the form shown below.

T x ozl v el
¥,

wkere

No=1{ji|d,<S Vie

An interesting application of the maximal, desirable distance constraint is to
impose a limit on the worst possible performance (in terms of maximum response
time) of the network of facilities. For example, this type of formulation would be
useful in locating fire stations where there might be 2 maximum allowable response
time.

2.2 The Set-Covering Problem. Along the same lines as the maximal desirable
distance problem, Torcgas has proposed a set-covering formulation for facility
location problems (42). The set-covering problem sceks to determine the minimum
number of facilities such that all users are situated no more than the maximal

desirable distance from the service location. Thus, unlike the p-median problem, the
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number of facilities, p, is a variable instead of a constant. The problem is formulat-

ed as follows:

Minimize X xy
¥

subject to
x”-xvzo Vijel i#f

Txz2l  Vid
JoN;

where

N, = {jld;sS} ¥ iel

The 0-1 integer variable, X;j is set to one when facility j is selected. As seen
previously, the N; variable ensures that, for any given demand location, the formula-
tion only considers facilities that are less than the maximal distance. The constraints
ensure that all locations are serviced and that the selected facilities are opened.

2.3 The Maximal Coverage Problem. The maximal distance p-median and the
set-covering formulations are useful when an unlimited number of facilities can be
constructed to meet a minimum demand. When there exists an upper bound on the
number of facilities that can be constructed, the models must be modified.

Church and Revelle (12) have proposed a methodology, known as the maxi-
mal-covering method, to deal with this type of problem. A second distance, S’, is
added to the formulation such that S’ > S, the maximal service distance. The
distance S’ represents the maximum distance a given facility can be from any
demand location. The constraints ensure that no user is located further than $’ away
from all facilities, and allows S to be a variable distance ranging between 0 and S,

The formulation maximizes the population served while meeting the con-
straint of service distance (di, < S) and the budgetary constraint (by limiting the

number of facilities to p). The service distance, S, can be varied up to the maximum
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S’, to analyze the tradeoff between travel distance and degree of coverage for

varying amounts of p. The problem is formulated as follows:

Maximize X f, x,
i

subject to
Yx =p
M /'l

Exyzx“ Y iel

(4

where
N, = {j|d;<s}  Viel
JSor i demand locations and j facilities

2.4 Probabilistic Methods. The facility location models discussed so far in this
paper are for deterministic problems. The data for the problem (distances and
demands) are assumed to be constant and known quantities. Whenever any or all of
these quantities are random variables, the problem is no longer deterministic but
becomes probabilistic in nature.

Mirchandani and Odoni (29) propose the following formulation to deal with

p-median problem with k states:

K
Minimize X X X Q, f, d,, x
k=1 iel eI ki G e

subject to:
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Thus the above formulation seeks to minimize the weighted sum of the travel
distance over all possible states. The probability associated with each state, Q,,
provides the weight, The variable Xisk takes on the value of one when demand point
i is assigned to facility j in state k. Therefore, this type of formulation allows for
facility assignments to vary from state to state based on the valuc of d;; which
could represent, for example, varying travel times based on time of day.

2.5 Stochastic Facility Location. Odoni advances that there are two types of
uncertainties in facility location problems (34):

(1) random travel times along the arcs of the network

(2) queuing phenomena arising from a combination of finite capacity at
the facilities and random location of demands on the network, or
random arrival time of the demands and random service times.

When the uncertainty is caused by random travel times, the problem can be
solved using the deterministic p-median formulation as described above, However,
when uncertainties are due to the queuing phenomena, "research efforts have been
focused upon single-facility problems due to the severe analytical difficulties
associated with multi-facility problems" (12),

The problem in this research paper could potentially involve uncertainties of
the second type. The satellites will have pseudo-random arrival times and require
random service times. Queuing, in the strict sense of the word, will not apply to
orbiting satellites. However, the demand for observations generated by operational
tasking requirements will need to be met in a timely manner.

2.6 Location on a Plane and Network. There are three ways to measure
distances in facility location problems: the Euclidean metric, the Manhattan metric,
and the continuous median method.

The Euclidean metric method utilizes the straight-line distance between
points. For example, this type of measurement would apply to air travel where users

can travel directly from the demand point to the facility. The Manhattan metric
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technique restricts travel along grid lines parallel to the coordinate axis. An obvious
application is when travel between two points must follow the rectangular pattern of
streets in a city (12).

In a network, the continuous median "is a point such that the sum of the
distances between all arcs and the point is minimum" (12). The distance between an
arc and a point is the length of the longest line that can be drawn from the point to
the arc. Similarly, the continuous p-median is a set of p points such that the sum of
the distances from all arcs to the closest point to each arc is a minimum.

2.7 Summary. The basic single facility location model is readily extended to
the p-median problem where p facilities are optimally located to satisfy demands.
This type of problem minimizes the average distance or time between a facility and
the locations it services. A constraint can be added to the p-median problem to limit
the distance from a demand point to a facility. This distance is known as the
maximum desirable service distance.

The set-covering formulation is similar to the maximal desirabie distance
problem formulation. Both methodologies locate the minimum number of facilities
required to serve the demand points such that all users are situated no further away
than the maximal distance. The maximal coverage technique has been developed to
deal with problems where there is a limited number of available facilities.

Probabilistic methods provide ways of dealing with problem parameters that
are random variables. Mirchandani and Odoni (29) have proposed a formulation to
deal with p-median problems with multiple states.

Odoni (34) has identified two types of uncertainties in facility location
problems. Problem with uncertainties due to random travel times along the arcs can
be solved using deterministic p-median formulations. Other types of uncertainties

may create severe analytical difficulties.

21




Three ways to measure distances in facility location problems have been
identified: the Euclidean metric, the Manhattan metric, and the continuous median

methods.

3. Network-Flow Programming

Most of us can readily grasp the concept of a network model when we see the
simple diagram of a number of arcs connecting together a number of nodes (or
vertices). Physical significance can immediately be attached to the elements of a
network model as one sees the parallel with a communication network or visualizes
the flow of fluids through pipes (the arcs) and pumping stations (the nodes).

Network modeling techniques can be applied to several types of problems,
and are applied in this research to two facility location problems (Chapter 1V).
Representing these problems as networks helped provide an understanding of the
dynamics of the problem. Phillips and Garcia-Diaz list the following advantages of
using network models (35):

1. Network models accurately represent many real-world systems,

2. Network models scem to be more readily accepted by nonanalysts than

perhaps any other type of models used in operations research. This phe-
nomenon appears to stem from the notion that "a picture is worth a thou-

sand words"...

3. Network algorithms facilitate extremely efficient solutions to some large-
scale models.

4. Network algorithms can often solve problems with significantly more
variables than can be solved by other optimization techniques. This

phenomenon is due to the fact that a network approach often allows the
exploitation of particular structures in a model,

3.1 Definitions and Terminology. The following definitions are taken from

Chan (10) and Phillips and Garcia (35).
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3.1.1 Graph. A graph, G(V,E), is a set of nodes V=(1,2,..,m) connected
by edges E={e,¢,,..,¢,).

3.1.2 Network. A network is a graph with flow of some kind.

3.1.3 Unimodular. A square, integer matrix is called unimodular if its
determinant, det(B) = +/- 1. An integer matrix A is called totally unimodular (TU)
if eveiy sqnare. ncn-singular submatrix of A is unimodular,

3.1.4 Source/Sink. A source in a network is a node where units of
flow enter the network. Conversely, a sink in a network is a node where units of
flow leave the network. Networks can be designed with multiple sources and sinks.

3.1.5 Pure/Generalized Networks. In a pure network, there are no
losses or gains of units of flow through the network. For every unit of flow entering
the network, there is one unit of flow leaving the network. In a generalized net-
work, losses or gains can be modelled to occur at nodes and/or arcs. The flow in
and/or out of the network at a given node can be fixed or variable.

3.2 Theorems.

3.2.1 If matrix A is TU, then all the vertices of the polyhedron
P(b) ={x € R®, : Ax < b}, are integer for any integer vector b, b € Z7, (i.c.,

an integer solution can be obtained to a linear program without the need to impose
integer restriction to the variables when the constraint matrix A is TU).

3.2.2 An integer matrix A with all elements a;;=0, +/- 1,is TU if no
more than two nonzero entri¢s appear in any column, and if the rows of A can be
partitioned into two sets, Q, and Q, such that:

(1) If a column has two entries of the same sign, their rows are
in different sets Q; and Q,, and
(2) If a column has two entries of different signs, their rows

are in the same set Q; and Q,.
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4. Climatolog)

4.] The Canadian Climates. The Canadian Encyclopedia (41:354) lists 5 main
climatic regions for the southern populated areas of Canada: East Coast, Great
Lakes, Prairies, Cordilleran (Rocky Mountain) and West Coast. Further, the authors
claim that while many different climatic regions exist in the far North, the mostly
uninhabited area of northern Canada can be subdivided into Arctic and Subarctic
climatic regions.

The subdivisions found in the Canadian Encyclopedia ciosely parallel those
presented by Trewartha et al. (45) who identify a "Polar Tundra" region for the
Arctic, a "Boreal” region for the Subarctic, a "Temperate Oceanic” region for the West
Coast, and a "Highland" region for the Cordilleran. Trewartha et al, group most of
the Prairies, and the Great Lakes and East Coast regions under the heading of
*Temperate Continental” and identifies a portion of southern Saskatchewan and
Alberta as belonging to the "Dry Steppe” climate group.

"Defining climatic regions for any country is difficult.. Within a geographic-
al area, climates gradually change from one type to another" (41:353). For the
purposes of this research, the climate regions identified in the Canadian Encyclope-
dia will be adopted. The following climate types "result from the relationship
between monthly potential evapotranspiration, PE, (or need